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Long and short range spin-spin interactions in ErBa2Cu3O7
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Abstract. Dipolar spin-spin interactions play a crucial role as for the magnetic order in the compounds
of the RBa2Cu3O6+x family, (R = Dy, Er, Nd). However, inelastic neutron scattering data observed in
ErBa2Cu3O7 can be explained only if exchange interactions in addition to dipolar ones are taken into
account.

PACS. 75.10.-b General theory and models of magnetic ordering – 75.25.+z Spin arrangements in magnet-
ically ordered materials (including neutron and spin-polarized electron studies, synchrotron-source X-ray
scattering, etc.) – 75.50.-y Studies of specific magnetic materials

1 Introduction

Rare earth compounds of the RBa2Cu3O6+x (R = Dy, Er,
Nd) family are extensively studied [1] and the main part of
the observed spin configurations of the rare earth ions lat-
tice are columnar with alternating ferromagnetic chains.
Magnetic long range order disappears above a very low
critical temperature (TN <1 K). In particular the Er3+

ions in ErBa2Cu3O7 localized on an orthorhombic lat-
tice with a = 3.82 Å, b = 3.88 Å, c = 11.66 Å below
TN = 0.6 K show long range antiferromagnetic order along
a and c, and ferromagnetic order along b characterized by
the wave vector Q = (1

2 , 0,
1
2 ) with spins pointing along

b [1]. This spin configuration is ascribed to dipolar interac-
tions [1], but in presence of only dipolar forces character-
ized by gxx = gyy spins make ferromagnetic chains along
a (Q = (0, 1

2 ,
1
2 )) and spins point along a [2] in contrast

with experiment. Indeed in equation (3.3) of reference [2]
one sees that the configuration corresponding to an order
wave vector Q = (0, 1

2 ,
1
2 ) with spins pointing along a has

a lower dipolar energy with respect to the configuration
corresponding to Q = (1

2 , 0,
1
2 ) with spins pointing along

b. However, suitable exchange interactions can stabilize
the Q = (1

2 , 0,
1
2 ) configuration [2]. On the other hand a

Heisenberg model with only exchange interactions [3] sup-
ports the spin configuration observed by elastic neutron
scattering and the spin wave spectrum too agrees with
experimental data obtained by inelastic neutron scatter-
ing [4]. Anyway a reliable picture cannot neglect dipolar
forces. Indeed long time ago [5] it was shown that the
dipolar interaction contribution to the elementary exci-
tation spectrum can be simulated by a single ion effec-
tive anisotropy in transition metal compounds where the
exchange interaction is sufficiently large. This is not the

a e-mail: rastelli@fisica.unipr.it
or rastelli@pr.infn.it

case for ErBa2Cu3O7 where the exchange coupling is very
weak.

Moreover the energy level scheme for Er3+ ions in
ErBa2Cu3Ox (6 < x < 7) was investigated by neutron
spectroscopy and fitted by crystalline-electric-field (CEF)
calculation [6]. This calculation leads to a Kramers dou-
blet ground state corresponding to an effective spin S =
1/2 with an anisotropic diagonal g-tensor (gxx 6= gyy 6=
gzz). The in-plane anisotropy (gxx 6= gyy) is sufficient to
stabilize the spin configuration observed in ErBa2Cu3O7

even though exchange interactions are neglected. However,
we find that the magnon spectrum obtained from inelastic
neutron scattering can be recovered only if nearest neigh-
bour (NN) and next nearest neighbour (NNN) exchange
interactions are accounted for.

In Section 2 we evaluate the g-factors of the Er3+ ions
assuming the CEF parameters suggested in reference [6]
and we study the region of stability of the observed spin
configuration in ErBa2Cu3O7 when both dipolar and ex-
change interactions are accounted for. In Section 3 we
work out the spin wave spectrum and we find a relevant
splitting of the spin wave dispersion curve not observed in
experiment [4]. In Section 4 we give the inelastic neutron
scattering cross-section and show that the observation of
only one spin wave branch could be ascribed to different
intensities of the two spin wave branches along with a lim-
ited instrument resolution.

2 Minimum energy spin configuration

Neutron spectroscopy of the energy levels of the Er3+ ions
in ErBa2Cu3Ox (6 < x < 7) was explained by CEF cal-
culation [6]. The magnetic properties of the Er3+ ion at
low temperature can be described by a localized effective
spin S = 1/2 with an anisotropic g-tensor. On the basis
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of the CEF parameters given in Table II of reference [6]
for ErBa2Cu3O6.98 we have evaluated the wave functions
belonging to the ground state doublet and the matrix el-
ements of the diagonal g-tensor. We obtain

gxx = 7.42, gyy = 8.04, gzz = 4.57. (2.1)

Anisotropy in the x and y components of the g-tensor
was also predicted [7,8] by means of CEF theory on
the basis of scaled inelastic neutron scattering results for
HoBa2Cu3O7. Anyway we base our calculations on the
level scheme of Er3+ ions calculated by the CEF theory
using experimental data of inelastic neutron scattering on
ErBa2Cu3O7 [6]. We evaluate the classical energies of the
collinear spin configurations in an orthorhombic lattice
starting from the following Hamiltonian model

H =
1

2
µ2
B

∑
α,β

∑
i,R

1

R3

(
δα,β − 3

RαRβ

R2

)
gααgββS

α
i S

β
i+R

+ ηx
∑
i,δ

JδS
x
i S

x
i+δ +

∑
i,δ

JδS
y
i S

y
i+δ + ηz

∑
i,δ

Szi S
z
i+δ

(2.2)

where α, β = x, y, z, µB is the Bohr magneton, i, and
R label the sites of an orthorhombic lattice. Jδ is J for
δ = (± a, 0, 0), (0,± b, 0), J ′ for δ = (0, 0,± c), and J2 for
δ = (± a,± b, 0). 2J , 2J ′ and 2J2 are the NN in plane,
NN out of plane, and NNN in plane antiferromagnetic
exchange couplings, respectively. The exchange anisotropy
constants are assumed to be ηx = (gxx/gyy)

2 = 0.85, ηz =
(gzz/gyy)

2 = 0.32.
The classical energy of the model Hamiltonian (2.2)

for collinear spin configurations can be characterized by
a wave vector Q and polar angles θ and φ of the spins
with respect to the crystal axis x, y, z pointing along a, b, c,
respectively.

E0(Q) =
1

2
NS(S + 1)

{[
− µ2

Bg
2
xxD

xx(Q)

+ 2ηxJ(Q)
]

sin2 θ cos2 φ+
[
− µ2

Bg
2
yyD

yy(Q)

+ 2J(Q)
]

sin2 θ sin2 φ

+
[
− µ2

Bg
2
zzD

zz(Q) + 2ηzJ(Q)
]

cos2 θ
}

(2.3)

where

Dαβ(Q) =
∑
R

1

R3

(
3
RαRβ

R2
− δαβ

)
e−iQ·R (2.4)

and

J(Q) = 2J [cos(aQx) + cos(bQy)]

+ 2J ′ cos(cQz) + 4J2 cos(aQx) cos(bQy). (2.5)

Dipolar interactions and NNN exchange interaction J2 se-
lect columnar spin configurations whereas NN exchange
interaction J supports Néel configurations. Note that pos-
sible ferromagnetic order along the c-axis is ruled out

by the antiferromagnetic exchange coupling J ′. So we
study the spin configurations which have the lowest en-
ergy in presence of antiferromagnetic exchange interac-
tions. These configurations are characterized by the wave
vectors Q = (0, 1

2 ,
1
2 ), Q = (1

2 , 0,
1
2 ) and Q = (1

2 ,
1
2 ,

1
2 ) for

which the classical energies (in meV) are

E0

(
0,

1

2
,

1

2

)
=

1

2
S(S + 1)N

{
−
[
0.004881g2

xx

+ 4ηx(J ′ + 2J2)
]

sin2 θ cos2 φ

+
[
0.005673g2

yy − 4(J ′ + 2J2)
]

sin2 θ sin2 φ

−
[
0.000792g2

zz + 4ηz(J
′ + 2J2)

]
cos2 θ

}
.

(2.6)

The minimum is obtained for θ = π/2, φ = 0 correspond-
ing to the q(6x) configuration in the notation of refer-
ence [2].

E0

(1

2
, 0,

1

2

)
=

1

2
S(S + 1)N

{[
0.005671g2

xx

− 4ηx(J ′ + 2J2)
]

sin2 θ cos2 φ

−
[
0.004715g2

yy + 4(J ′ + 2J2)
]

sin2 θ sin2 φ

−
[
0.000956g2

zz + 4ηz(J
′ + 2J2)

]
cos2 θ

}
.

(2.7)

The minimum is obtained for θ = π/2, φ = π/2 corre-
sponding to the q(8y) configuration in the notation of
reference [2]. Note that for an in-plane isotropic g-tensor
(gxx = gyy = g⊥) and ηx = 1 the Q = (1

2 , 0,
1
2 ) con-

figuration is unstable with respect to the Q = (0, 1
2 ,

1
2 )

configuration in agreement with equation (3.3) of refer-
ence [2].

E0

(1

2
,

1

2
,

1

2

)
=

1

2
S(S + 1)N

{[
0.001394g2

xx

− 4ηx(2J + J ′ − 2J2)
]

sin2 θ cos2 φ

+
[
0.001096g2

yy − 4(2J + J ′ − 2J2)
]

sin2 θ sin2 φ

−
[
0.002490g2

zz + 4ηz(2J + J ′ − 2J2)
]

cos2 θ
}
.

(2.8)

The minimum is obtained for θ = 0 corresponding to the
q(2z) configuration in the notation of reference [2].

We find the Q = (1
2 , 0,

1
2 ) configuration observed in

ErBa2Cu3O7 [1] to be stable when J−2J2 < 0.00073g2
yy =

0.047 meV.

3 Spin waves

To get the spin wave spectrum [9] we perform a trans-
formation from the x, y, z crystal axis to local axis ξ, η, ζ
where ζ (the local quantization axis) is parallel to y. The
local axis are modulated according to the order wave vec-
tor Q. Note that 2Q is a reciprocal lattice vector for
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all collinear spin configurations. We perform the custom-
ary spin-boson transformation retaining only the contri-
butions that give the bilinear part of the Hamiltonian:

Sxi = − cos(Q · ri)

√
2S

2i
(ai − a

†
i ) (3.1)

Syi = cos(Q · ri)(S − a
†
iai) (3.2)

Szi = −

√
2S

2
(ai + a†i ). (3.3)

Substitution of (3.1, 3.2, 3.3) in Hamiltonian (2.2) leads
to the following bilinear Hamiltonian

H2 =
∑
q

{
Aqa

†
qaq +

1

2
Bq(aqa−q + a†qa

†
−q)

+
1

2
(iCqaqa−q−Q − iCqa

†
qa
†
−q−Q) + iDqa

†
qaq+Q

}
(3.4)

where

Aq =
1

2
µ2
BS
[
2g2
yyD

yy(Q)

− g2
xxD

xx(q + Q)− g2
zzD

zz(q)
]

+ 2S
{

2J ′ + 4J2 − ηx[J(cos(aqx)− cos(bqy))

+ J ′ cos(cqz) + 2J2 cos(aqx) cos(bqy)]

+ ηz[J(cos(aqx) + cos(bqy))

+ J ′ cos(cqz) + 2J2 cos(aqx) cos(bqy)]
}

(3.5)

Bq =
1

2
µ2
BS
[
g2
xxD

xx(q + Q)− g2
zzD

zz(q)
]

+ 2S
{
ηx[J(cos(aqx)− cos(bqy)) + J ′ cos(cqz)

+ 2J2 cos(aqx) cos(bqy)]

+ ηz[J(cos(aqx) + cos(bqy)) + J ′ cos(cqz)

+ 2J2 cos(aqx) cos(bqy)]
}

(3.6)

Cq = −
1

2
µ2
BSgxxgzz

[
Dxz(q) +Dxz(q + Q)

]
(3.7)

Dq = −
1

2
µ2
BSgxxgzz

[
Dxz(q) −Dxz(q + Q)

]
. (3.8)

Fig. 1. Dispersion relation along (h, h, 1.3) in r.l.u. taking only
dipolar interactions into account. Open circles are experimen-
tal data from reference [4].

Diagonalization of (3.4) leads to the following two
branches of the spin wave spectrum

~ω±q =

{
1

2

[
A2

q −B
2
q +A2

q+Q −B
2
q+Q

]
−
(
C2

q −D
2
q

)
±

[
1

4

(
A2

q −B
2
q −A

2
q+Q +B2

q+Q

)2

− C2
q
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)2
−
(
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)2)
+D2

q

((
Aq +Aq+Q

)2
−
(
Bq +Bq+Q

)2)
− 4CqDq

(
AqBq+Q −Aq+QBq

)]1/2}1/2

.

(3.9)

Similar spectra were obtained for 2D square lattice [10]
as well as for hexagonal lattice [11] in order to describe
the neutron scattering measurements on the ferromagnetic
chain system CsNiF3. For high symmetry directions one
finds Cq = Dq = 0. In ErBa2Cu3O7 we have proved that
Cq ' Dq ' 0 for any q. For this reason the spectra (3.9)
reduce to

~ω+
q = ~ωq =

√
A2

q −B
2
q (3.10)

~ω−q = ~ωq+Q =
√
A2

q+Q −B
2
q+Q. (3.11)

In Figure 1 we show the magnon spectrum along the direc-
tion qx = 2π

a
h, qy = 2π

b
h, qz = 1.3 2π

c
((h, h, 1.3) direction

in r.l.u.) neglecting exchange interactions at all. Inelas-
tic neutron scattering data [4] along the above direction
are shown in Figure 1 by open circles. As one can see ex-
perimental data cannot be recovered. For this reason we
have introduced exchange interactions. Figure 2 shows the
agreement of our results with the experimental data ob-
tained by the choice J = 0.030 meV, J ′ = 0.0015 meV,
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Fig. 2. Dispersion relation along (h, h, 1.3) in r.l.u. taking both
dipolar and exchange interactions into account. Open circles
are experimental data from reference [4].

J2 = 0.0135 meV. Obviously, this choice satisfies the sta-
bility condition J − 2J2 < 0.047 meV given at the end of
Section 2. The only effect of a weak J ′ is to stabilize the
antiferromagnetic ordering along the c axis. Even though
the best fit is obtained by the above choice, reasonable fit-
ting can be achieved in the range 0.025 < J < 0.035 meV
provided that any increasing of J is joined to a conve-
nient decreasing of J2. Anyway the introduction of a NNN
in-plane antiferromagnetic interaction J2 which supports
columnar ordering, is crucial. As one can see in Figure 2
experimental data fall on a unique curve. In the next Sec-
tion we will discuss the inelastic neutron scattering cross-
section in order to understand why only one branch is
observed experimentally. Further experimental data in dif-
ferent directions of the reciprocal lattice as (h, 0, l) or
(0, h, l) should be welcome in order to evaluate unambigu-
ously the exchange interactions.

4 Neutron scattering cross-section

Inelastic neutron scattering cross-section is [12]

(
d2σ

dΩdω

)
∝ |F (q)|2

{(
1−

q2
z

q2

)
g2
zz

√
Aq −Bq

Aq +Bq

×

[
(1 + nq)δ(ω − ω+

q ) + nqδ(ω + ω+
q )

]
+
(

1−
q2
x

q2

)
g2
xx

√
Aq+Q +Bq+Q

Aq+Q −Bq+Q

×

[
(1 + nq+Q)δ(ω − ω−q ) + nq+Qδ(ω + ω−q )

]}
(4.1)

where q is the scattering vector. In Table 1 we give the

Table 1. Peak intensity of inelastic neutron scattering and
related frequencies (meV) along (h, h, 1.3).

h I+
q ω+

q I−q ω−q

0 0 0.337 48.317 0.208

0.1 2.094 0.303 44.615 0.223

0.2 6.705 0.246 43.583 0.218

0.3 9.597 0.174 41.769 0.202

0.4 8.420 0.105 37.509 0.191

0.5 6.582 0.070 33.968 0.188

peak intensities

I+
q = g2

zz

(
1−

q2
z

q2

)√Aq −Bq

Aq +Bq
,

I−q = g2
xx

(
1−

q2
x

q2

)√Aq+Q +Bq+Q

Aq+Q −Bq+Q
(4.2)

and related frequencies ω+
q , ω−q along the (h, h, 1.3) direc-

tion. As one can see the peak intensity I−q is always larger

than I+
q . This could explain the fact that only a branch

of the spin wave spectrum is observed experimentally [4].
We recall that the full width at half maximum (FWHM)
in experimental data [4] is ∆ω ' 0.1 meV and that a pro-
nounced non magnetic peak is observed around ω = 0. In
Figure 3 we simulate the neutron scattering peak profile by
the sum of two Gaussians centred at ω+

q and ω−q , according
to Table 1, for q = (0.1, 0.1, 1.3) (3a), q = (0.2, 0.2, 1.3)
(3b), q = (0.3, 0.3, 1.3) (3c), q = (0.4, 0.4, 1.3) (3d), re-
spectively. The FWHM of the two Gaussians (open cir-
cles) is chosen to be ∆ω = 0.1 meV according to the en-
ergy resolution of the experiment [4]. The areas under the
two Gaussians are chosen to be I+

q and I−q , respectively.
Their values are taken from Table 1. Continuous curve is
the sum of the two Gaussians. As one can see the unique
peak observed in experiment could be explained by the
ovrlap of two peaks of different intensities. In this way the
experimental data shown in Figure 2 of reference [4] can
be recovered. In particular, our Figure 3c compares favor-
ably with experimental peak profile shown in Figure 3a of
reference [4]. Note that the peak at ω = 0 observed in ex-
periment is not magnetic in origin so that our calculation
has nothing to do with it.

5 Summary and concluding remarks

We have shown that both dipolar and exchange interac-
tions must be taken into account in order to get a reliable
description of the magnetic properties of ErBa2Cu3O7 [1].
Owing to the in-plane anisotropy of the g-tensor [6],
the dipolar interactions are sufficient to explain the
ground state spin configuration observed by elastic neu-
tron scattering [1]. However, the exchange interactions,
even though very weak, are crucial in order to explain the
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Fig. 3. Peak profile (continuous curve) simulated by the sum two Gaussians (open circles) with FWHM of 0.1 meV centered
at ω+ and ω− for selected values of q along the (h, h, 1.3) direction. (a): h = 0.1, (b): h = 0.2, (c): h = 0.3, (d): h = 0.4.

inelastic neutron scattering data [4]. The spin wave spec-
trum we obtain consists on two branches and the splitting
induced by the dipolar interactions is relevant, of the same
order of the observed gap [4] along the (h, h, 1.3) direction
where the experimental data fall on a unique curve. We
have calculated the inelastic neutron cross-section along
this direction and we have recovered the experimental
data since only one branch is actually observable owing
to marked differences between the intensities of the two
branches, and the instrumental resolution limitation.

In conclusion we stress that spin waves in ErBa2Cu3O7

show features strongly affected by dipolar forces because
the exchange is very weak. In this case dipolar forces
cannot be simply simulated by a single ion effective
anisotropy as it occurs, for instance, in transition metal
compounds [5].

This research was supported in part by Consiglio Nazionale
delle Ricerche. The authors acknowledge Dr. U. Staub for stim-
ulating correspondence and Prof. G. Amoretti for helpful dis-
cussions.
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